
2 Existence of infinitesimal isometries on Rie-
mannian manifolds of dimension 2

Let (M, g) be a smooth Riemannian manifold of dimension n. A smooth
vector field ξ on M is an infinitesimal isometry (or a Killing field) if and only
if ξ satisfies

Lξg = 0, (2.1)

where L is the Lie derivative. In terms of local coordinates x = (x1, · · · , xn)
(2.1) becomes

ξλ
i gλj + ξλ

j gλi − ξλgij,λ = 0, i, j = 1, · · · , n, (2.2)

where gij = g(∂i, ∂j) and ξ = ξλ ∂
∂xλ (summation convention for λ = 1, · · · , n).

Since (2.2) is symmetric in (i, j) the number of equations in (2.2) is n(n+1)
2

whereas the number of unknowns is n so that (2.2) is overdetermined if n ≥ 2.
In this section we shall present a coordinate-free computation of prolongation
of (2.1) with n = 2 to a complete system of order 2 and discuss the existence
of solutions. Let {e1, e2} be an orthonormal frame over a 2-dimensional
Riemannian manifold M and let ω1, ω2 be the dual coframe. Then

g = ω1 ◦ ω1 + ω2 ◦ ω2,

where φ◦η := 1
2(φ⊗η+η⊗φ) is the symmetric product of 1-forms. Recall also

that there exist a uniquely determined 1-form ω1
2 (Levi-Civita connection)

and a function K (Gaussian curvature) satisfying

dω1 = −ω1
2 ∧ ω2

dω2 = ω1
2 ∧ ω1

}

(2.3)

and
dω1

2 = Kω1 ∧ ω2. (2.4)

Furthermore, Lie derivatives of ωi, i = 1, 2 with respect to a vector field
ξ = ξ1e1 + ξ2e2 are

Lξω1 = d(ξyω1) + ξydω1

= dξ1 − ω1
2(ξ)ω

2 + ξ2ω1
2 by (2.3) (2.5)

and similarly
Lξω2 = d(ξyω2) + ξydω2

= dξ2 + ω1
2(ξ)ω

1 − ξ1ω1
2.

(2.6)
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By (2.5) and (2.6), we have

1
2
Lξg = (Lξω1) ◦ ω1 + (Lξω2) ◦ ω2

= (dξ1 + ξ2ω1
2) ◦ ω1 + (dξ2 − ξ1ω1

2) ◦ ω2.

By setting
{

dξ1 = −ξ2ω1
2 + ξ1

1ω
1 + ξ1

2ω
2,

dξ2 = ξ1ω1
2 + ξ2

1ω
1 + ξ2

2ω
2 (2.7)

and substituting in the above we have

1
2
Lξg = ξ1

1ω
1 ◦ ω1 + (ξ1

2 + ξ2
1)ω

1 ◦ ω2 + ξ2
2ω

2 ⊗ ω2.

By (2.1), ξ is an infinitesimal isometry if and only if

ξ1
1 = ξ2

2 = 0, ξ1
2 + ξ2

1 = 0. (2.8)

Substituting (2.8) in (2.7) we see that a vector field ξ = ξ1e1 + ξ2e2 is an
infinitesimal isometry if and only if

{

dξ1 = −ξ2ω1
2 + ξ1

2ω
2,

dξ2 = ξ1ω1
2 + ξ2

1ω
1, (2.9)

which is a coordinate-free version of (2.2) with n = 2 expressed as an exterior
differential system. Prolongation of (2.9) to a complete system is differenti-
ating (2.9) and expressing (dξ1, dξ2, dξ1

2) in terms of (ξ1, ξ2, ξ1
2) :

We apply d to (2.9) and substitute (2.9), (2.3) and (2.4) for dξi, dωi and dω1
2,

respectively, to obtain

(dξ1
2 −Kξ2ω1) ∧ ω2 = 0,

(dξ1
2 + Kξ1ω2) ∧ ω1 = 0.

Hence we have

dξ1
2 = K(ξ2ω1 − ξ1ω2). (2.10)

The system (2.9) and (2.10) is a prolongation of (2.1) to a complete system.
Now consider the Euclidean space R3 of variables (ξ1, ξ2, ξ1

2). Then the sub-
manifold of the first jet space of ξ defined by (2.8) may be identified with
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S := M × R3.
On M × R3 consider the Pfaffian system θ = (θ1, θ2, θ3) given by

θ1 = dξ1 + ξ2ω1
2 − ξ1

2ω
2,

θ2 = dξ2 − ξ1ω1
2 + ξ1

2ω
1,

θ3 = dξ1
2 −Kξ2ω1 + Kξ1ω2.

(2.11)

We check the Frobenius integrability conditions for (2.11): By (2.3) and (2.4)
we have

dθ1, dθ2 ≡ 0 mod θ

and
dθ3 ≡ (K1ξ1 + K2ξ2)ω1 ∧ ω2 mod θ

where Ki = dK(ei), i = 1, 2 so that dK = K1ω1 + K2ω2.
Thus (2.11) is integrable if and only if T := K1ξ1 + K2ξ2 is identically zero
on M × R3, which is equivalent to K1 = K2 = 0 i.e. K is constant. In this
case, there exist 3 parameter family of solutions by the Frobenius theorem.
Otherwise, assuming dT 6= 0 on T = 0, we consider a submanifold S ′ of
dimension 4 defined by T = 0.
Differentiating dK = K1ω1 + K2ω2, we see by (2.3) that

0 = d2K
= (dK1 + K2ω1

2)ω
1 + (dK2 −K1ω1

2)ω
2. (2.12)

Thus we put

dK1 = −K2ω1
2 + K11ω1 + K12ω2, (2.13)

dK2 = K1ω1
2 + K21ω1 + K22ω2. (2.14)

By substituting (2.13), (2.14) in (2.12) we have K12 = K21.

On S ′, we have by (2.11), (2.13) and (2.14)

dT = ξ1dK1 + K1dξ1 + ξ2dK2 + K2dξ2

≡ (K11ξ1 + K12ξ2 −K2ξ1
2)ω

1 + (K12ξ1 + K22ξ2 + K1ξ1
2)ω

2 mod θ.

We set
{

T1 = K11ξ1 + K12ξ2 −K2ξ1
2 ,

T2 = K12ξ1 + K22ξ2 + K1ξ1
2 .

(2.15)
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If T1, T2 ≡ 0 on S ′, i∗θ1, i∗θ3, i∗θ3 have rank 2 by Theorem 1.1. Then S ′
is foliated by two dimensional integral manifolds and therefore there are 2
parameter family of solutions. But this implies that K1 = K2 = 0 which is
impossible.

Let A =





K1 K2 0
K11 K12 −K2

K12 K22 K1



.

If det A = 0, A has rank 2 and S ′′ = {T = T1 = T2 = 0} is a 3-dimensional
submanifold of S. If we have dT1, dT2 ≡ 0 mod θ1, θ2, θ3 on S ′′, Theorem
1.1 and the Frobenius theorem imply that S ′′ is foliated by two dimensional
integral manifolds and therefore there exists 1 parameter family of solutions.
To calculate dT1, dT2 we differentiate (2.13). Then we have

0 = d2K1

= (dK11 + 2K12ω1
2 + K2Kω2)ω1 + (dK12 + K22ω1

2 −K11ω1
2)ω

2.
(2.16)

Thus we put

dK11 = −2K12ω1
2 + K111ω1 + K112ω2, (2.17)

dK12 = (K11 −K22)ω1
2 + K121ω1 + K122ω2. (2.18)

By substituting (2.17), (2.18) in (2.16) we have K112 = K121 −K2K.

Differentiating (2.14), we have

0 = d2K2

= (dK12 + K22ω1
2 −K11ω1

2)ω
1 + (dK22 − 2K12ω1

2 + K1Kω1)ω2.
(2.19)

By substituting (2.17), (2.18) in (2.19) we have

(dK22 − 2K12ω1
2 + K1Kω1 −K122ω1)ω2 = 0.

Thus we put

dK22 = 2K12ω1
2 + (K122 −K1K)ω1 + K222ω2. (2.20)
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On S ′′, we have by (2.11), (2.17), (2.18) and (2.20)

dT1 ≡ (K111ξ1 + (K121 −K2K)ξ2 − 2K12ξ1
2)ω

1

+(K121ξ1 + K122ξ2 + (K11 −K22)ξ1
2)ω

2 mod θ

and

dT2 ≡ (K121ξ1 + K122ξ2 + (K11 −K22)ξ1
2)ω

1

+((K122 −K1K)ξ1 + K222ξ2 + 2K12ξ1
2)ω

2 mod θ.

We summarize the discussions of this section in the following

Theorem 2.1 Let M be a Riemannian manifold of dimension 2.

Let K =

















K1 K2 0
K11 K12 −K2

K12 K22 K1

K111 K121 −K2K −2K12

K121 K122 K11 −K22

K122 −K1K K222 2K12

















.

(i) If K has rank 0, there exist 3 parameter family of infinitesimal isome-
tries,

(ii) If K has rank 2 and (K1, K2) 6= 0, there exist 1 parameter family of
infinitesimal isometries,

(iii) If K has rank 3, there exists only trivial infinitesimal isometry.
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