2 Existence of infinitesimal isometries on Rie-
mannian manifolds of dimension 2
Let (M, g) be a smooth Riemannian manifold of dimension n. A smooth

vector field £ on M is an infinitesimal isometry (or a Killing field) if and only
if ¢ satisfies

Leg =0, (2.1)

where L is the Lie derivative. In terms of local coordinates x = (x!,--- , z")
(2.1) becomes

&E'ox + & 9n — Egya =0, ij=1-.n, (2.2)

where g;; = ¢(0;,0;) and £ = an% (summation convention for A = 1,--- | n).
Since (2.2) is symmetric in (4, j) the number of equations in (2.2) is n(";l)
whereas the number of unknowns is n so that (2.2) is overdetermined if n > 2.
In this section we shall present a coordinate-free computation of prolongation
of (2.1) with n = 2 to a complete system of order 2 and discuss the existence
of solutions. Let {ej,es} be an orthonormal frame over a 2-dimensional

Riemannian manifold M and let w!,w? be the dual coframe. Then

g=wlow! +w?ouw?

where ¢on := 1 (¢®n+n®¢) is the symmetric product of 1-forms. Recall also
that there exist a uniquely determined 1-form wj (Levi-Civita connection)
and a function K (Gaussian curvature) satisfying

dw! = —wl A W?

dw? = wQ% A wt } (2:3)
and

dwy = Kw' A WP, (2.4)

Furthermore, Lie derivatives of w?, i = 1,2 with respect to a vector field
§ =Eler + E2; are

Lew' = d(Eaw') + Eodw?

dET — Wh(€)w? + E2wb by (2.3) (2:5)

and similarly
Lew? = d(Eaw?) + Eadw?
= det w0 — €l (26)
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By (2.5) and (2.6), we have

1
~Leg = (Lew')ow' + (Lew?) o w?

2
= (d€' + Ewy) ow' + (d€¥ — Elwy) 0w,
By setting
dé’l = _€2w:2L + é}wl + 5%&)27 (2 7)
d§? = lwy + w! + Gw? '
and substituting in the above we have
1
§L59 =Gwlow! + (& + E)w! ow? + Hw? ® W2
By (2.1), £ is an infinitesimal isometry if and only if
§=6=06+&=0. (2.8)

Substituting (2.8) in (2.7) we see that a vector field & = £le; + £%e, is an
infinitesimal isometry if and only if

{dﬁl = —&wy + G’

dE = gl g (29)

which is a coordinate-free version of (2.2) with n = 2 expressed as an exterior
differential system. Prolongation of (2.9) to a complete system is differenti-
ating (2.9) and expressing (d¢!, d€?, d€l) in terms of (€1, €2,£)) -

We apply d to (2.9) and substitute (2.9), (2.3) and (2.4) for d¢’, dw' and dwy,
respectively, to obtain

(d&; — K&w') Aw? =0,
(déd + Ke'w?) Aw! = 0.

Hence we have
d¢y = K(&w' — ¢'w?). (2.10)

The system (2.9) and (2.10) is a prolongation of (2.1) to a complete system.
Now consider the Euclidean space R? of variables (£!,£2,£2). Then the sub-
manifold of the first jet space of ¢ defined by (2.8) may be identified with
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S := M x R3.
On M x R3 consider the Pfaffian system 6 = (', 62, 63) given by

0! = df' + uw; — L
6? = d&* —wi + Guw', (2.11)
03 = déi — K&w' + K&l

We check the Frobenius integrability conditions for (2.11): By (2.3) and (2.4)
we have

do',df* =0 mod 6

and
do® = (K& + Ky w' A w? mod 6

where K; = dK(e;), i = 1,2 so that dK = K jw! + Kyw?.

Thus (2.11) is integrable if and only if T := K& + K»£? is identically zero
on M x R3, which is equivalent to K; = Ky = 0 i.e. K is constant. In this
case, there exist 3 parameter family of solutions by the Frobenius theorem.
Otherwise, assuming dT" # 0 on T = 0, we consider a submanifold S of
dimension 4 defined by 7' = 0.

Differentiating dK = K w' + Kyw?, we see by (2.3) that

0 = &K (2.12)
= (dKl + ng%)wl + (dKQ - Klw%)wQ. '
Thus we put
dKl = —ng% + Kllwl + K12w2, (213)
dK2 = Klw% + Kglwl + KQQWQ. (214)

By substituting (2.13), (2.14) in (2.12) we have K5 = K.
On &', we have by (2.11), (2.13) and (2.14)

dT = ¢'dK + Kydg' + £dKy + Kpdg?
= (K11§1 + K1252 — KQSQI)CUI + <K12€1 + K22§2 + Kﬁ%)uﬂ mod 6.
We set

{TI = Kn&' + K18 — Kyél,

2.15
T, = Kipp&' 4 Konl® + Ki&5. (2.15)
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If Ty,7, = 0 on &', *0,i*03,i*60° have rank 2 by Theorem 1.1. Then &’
is foliated by two dimensional integral manifolds and therefore there are 2
parameter family of solutions. But this implies that K; = K5 = 0 which is
impossible.

K, K, 0
Let A = Kll K12 —KQ
K12 K22 Kl

If det A = 0, A has rank 2 and " = {T' =T, = T, = 0} is a 3-dimensional
submanifold of S. If we have dT},dT> = 0 mod 0',62%,0° on S”, Theorem
1.1 and the Frobenius theorem imply that S” is foliated by two dimensional
integral manifolds and therefore there exists 1 parameter family of solutions.
To calculate dTy,dT, we differentiate (2.13). Then we have

O - d2K1
= (dKH + 2K12w§ + KQKwQ)wl + (dK12 -+ K22w% — K11w5>u)2.
(2.16)
Thus we put
dKH = —2K12w% -+ Klnwl + K112w2, (217)
dK12 = (KH — KQQ)UJ; + Klglwl + Klgng. (218)
By substituting (2.17), (2.18) in (2.16) we have Kj19 = K91 — Ko K.
Differentiating (2.14), we have
0 = d2K2
= (dK12 + KQQW% — Kllw%)wl + (dK22 — 2K12w% —|— Klel)w2.
(2.19)
By substituting (2.17), (2.18) in (2.19) we have
(dKQQ — 2K12w% + Klel - Kugwl)wQ = 0.
Thus we put
dK22 = 2K12w% + (K122 — KlK)wl + KQQQWQ. (220)
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On 8", we have by (2.11), (2.17), (2.18) and (2.20)

dly = (Kin&' + (Ko — KoK)E — 2K156 )w'
+H(K121E" 4+ K926 + (K1 — K92)&)w?  mod 6

and

ATy = (Kim€' + K1226” + (K1 — Kp)&3)w!
+((K122 — KlK)fl + K222€2 + 2K12§%)w2 mod 6.

We summarize the discussions of this section in the following

Theorem 2.1 Let M be a Riemannian manifold of dimension 2.

Ky Ky 0
K1 K —K,
K12 K22 Kl
Let K =
‘ K11 Ky — KoK —2K,
K121 K122 Kll - K22
K122 - KlK K222 2K12

(i) If K has rank 0, there exist 8 parameter family of infinitesimal isome-
tries,

(1) If K has rank 2 and (K, K3) # 0, there exist 1 parameter family of
infinitesimal isometries,

(i1i) If K has rank 3, there exists only trivial infinitesimal isometry.
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