2 Existence of infinitesimal isometries on Riemannian manifolds of dimension 2

Let (M, g) be a smooth Riemannian manifold of dimension n. A smooth vector field ξ on M is an infinitesimal isometry (or a Killing field) if and only if ξ satisfies

$$
\begin{equation*}
L_{\xi} g=0 \tag{2.1}
\end{equation*}
$$

where L is the Lie derivative. In terms of local coordinates $x=\left(x^{1}, \cdots, x^{n}\right)$ (2.1) becomes

$$
\begin{equation*}
\xi_{i}^{\lambda} g_{\lambda j}+\xi_{j}^{\lambda} g_{\lambda i}-\xi^{\lambda} g_{i j, \lambda}=0, \quad i, j=1, \cdots, n, \tag{2.2}
\end{equation*}
$$

where $g_{i j}=g\left(\partial_{i}, \partial_{j}\right)$ and $\xi=\xi^{\lambda} \frac{\partial}{\partial x^{\lambda}}$ (summation convention for $\left.\lambda=1, \cdots, n\right)$. Since (2.2) is symmetric in (i, j) the number of equations in (2.2) is $\frac{n(n+1)}{2}$ whereas the number of unknowns is n so that (2.2) is overdetermined if $n \geq 2$. In this section we shall present a coordinate-free computation of prolongation of (2.1) with $n=2$ to a complete system of order 2 and discuss the existence of solutions. Let $\left\{e_{1}, e_{2}\right\}$ be an orthonormal frame over a 2-dimensional Riemannian manifold M and let ω^{1}, ω^{2} be the dual coframe. Then

$$
g=\omega^{1} \circ \omega^{1}+\omega^{2} \circ \omega^{2}
$$

where $\phi \circ \eta:=\frac{1}{2}(\phi \otimes \eta+\eta \otimes \phi)$ is the symmetric product of 1-forms. Recall also that there exist a uniquely determined 1-form ω_{2}^{1} (Levi-Civita connection) and a function K (Gaussian curvature) satisfying

$$
\left.\begin{array}{l}
d \omega^{1}=-\omega_{2}^{1} \wedge \omega^{2} \tag{2.3}\\
d \omega^{2}=\omega_{2}^{1} \wedge \omega^{1}
\end{array}\right\}
$$

and

$$
\begin{equation*}
d \omega_{2}^{1}=K \omega^{1} \wedge \omega^{2} . \tag{2.4}
\end{equation*}
$$

Furthermore, Lie derivatives of $\omega^{i}, i=1,2$ with respect to a vector field $\xi=\xi^{1} e_{1}+\xi^{2} e_{2}$ are

$$
\begin{align*}
L_{\xi} \omega^{1} & \left.\left.=d(\xi\lrcorner \omega^{1}\right)+\xi\right\lrcorner d \omega^{1} \\
& =d \xi^{1}-\omega_{2}^{1}(\xi) \omega^{2}+\xi^{2} \omega_{2}^{1} \quad \text { by }(2.3) \tag{2.5}
\end{align*}
$$

and similarly

$$
\begin{align*}
L_{\xi} \omega^{2} & \left.\left.=d(\xi\lrcorner \omega^{2}\right)+\xi\right\lrcorner d \omega^{2} \\
& =d \xi^{2}+\omega_{2}^{1}(\xi) \omega^{1}-\xi^{1} \omega_{2}^{1} . \tag{2.6}
\end{align*}
$$

By (2.5) and (2.6), we have

$$
\begin{aligned}
\frac{1}{2} L_{\xi} g & =\left(L_{\xi} \omega^{1}\right) \circ \omega^{1}+\left(L_{\xi} \omega^{2}\right) \circ \omega^{2} \\
& =\left(d \xi^{1}+\xi^{2} \omega_{2}^{1}\right) \circ \omega^{1}+\left(d \xi^{2}-\xi^{1} \omega_{2}^{1}\right) \circ \omega^{2}
\end{aligned}
$$

By setting

$$
\left\{\begin{align*}
d \xi^{1} & =-\xi^{2} \omega_{2}^{1}+\xi_{1}^{1} \omega^{1}+\xi_{2}^{1} \omega^{2}, \tag{2.7}\\
d \xi^{2} & =\xi^{1} \omega_{2}^{1}+\xi_{1}^{2} \omega^{1}+\xi_{2}^{2} \omega^{2}
\end{align*}\right.
$$

and substituting in the above we have

$$
\frac{1}{2} L_{\xi} g=\xi_{1}^{1} \omega^{1} \circ \omega^{1}+\left(\xi_{2}^{1}+\xi_{1}^{2}\right) \omega^{1} \circ \omega^{2}+\xi_{2}^{2} \omega^{2} \otimes \omega^{2} .
$$

By (2.1), ξ is an infinitesimal isometry if and only if

$$
\begin{equation*}
\xi_{1}^{1}=\xi_{2}^{2}=0, \xi_{2}^{1}+\xi_{1}^{2}=0 \tag{2.8}
\end{equation*}
$$

Substituting (2.8) in (2.7) we see that a vector field $\xi=\xi^{1} e_{1}+\xi^{2} e_{2}$ is an infinitesimal isometry if and only if

$$
\left\{\begin{align*}
d \xi^{1} & =-\xi^{2} \omega_{2}^{1}+\xi_{2}^{1} \omega^{2}, \tag{2.9}\\
d \xi^{2} & =\xi^{1} \omega_{2}^{1}+\xi_{1}^{2} \omega^{1},
\end{align*}\right.
$$

which is a coordinate-free version of (2.2) with $n=2$ expressed as an exterior differential system. Prolongation of (2.9) to a complete system is differentiating (2.9) and expressing $\left(d \xi^{1}, d \xi^{2}, d \xi_{2}^{1}\right)$ in terms of $\left(\xi^{1}, \xi^{2}, \xi_{2}^{1}\right)$:
We apply d to (2.9) and substitute (2.9), (2.3) and (2.4) for $d \xi^{i}, d \omega^{i}$ and $d \omega_{2}^{1}$, respectively, to obtain

$$
\begin{aligned}
& \left(d \xi_{2}^{1}-K \xi^{2} \omega^{1}\right) \wedge \omega^{2}=0 \\
& \left(d \xi_{2}^{1}+K \xi^{1} \omega^{2}\right) \wedge \omega^{1}=0 .
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
d \xi_{2}^{1}=K\left(\xi^{2} \omega^{1}-\xi^{1} \omega^{2}\right) \tag{2.10}
\end{equation*}
$$

The system (2.9) and (2.10) is a prolongation of (2.1) to a complete system. Now consider the Euclidean space \mathbb{R}^{3} of variables $\left(\xi^{1}, \xi^{2}, \xi_{2}^{1}\right)$. Then the submanifold of the first jet space of ξ defined by (2.8) may be identified with
$\mathcal{S}:=M \times \mathbb{R}^{3}$.
On $M \times \mathbb{R}^{3}$ consider the Pfaffian system $\theta=\left(\theta^{1}, \theta^{2}, \theta^{3}\right)$ given by

$$
\begin{align*}
\theta^{1} & =d \xi^{1}+\xi^{2} \omega_{2}^{1}-\xi_{2}^{1} \omega^{2} \\
\theta^{2} & =d \xi^{2}-\xi^{1} \omega_{2}^{1}+\xi_{2}^{1} \omega^{1} \tag{2.11}\\
\theta^{3} & =d \xi_{2}^{1}-K \xi^{2} \omega^{1}+K \xi^{1} \omega^{2}
\end{align*}
$$

We check the Frobenius integrability conditions for (2.11): By (2.3) and (2.4) we have

$$
d \theta^{1}, d \theta^{2} \equiv 0 \quad \bmod \quad \theta
$$

and

$$
d \theta^{3} \equiv\left(K_{1} \xi^{1}+K_{2} \xi^{2}\right) \omega^{1} \wedge \omega^{2} \quad \bmod \theta
$$

where $K_{i}=d K\left(e_{i}\right), \quad i=1,2$ so that $d K=K_{1} \omega^{1}+K_{2} \omega^{2}$.
Thus (2.11) is integrable if and only if $T:=K_{1} \xi^{1}+K_{2} \xi^{2}$ is identically zero on $M \times \mathbb{R}^{3}$, which is equivalent to $K_{1}=K_{2}=0$ i.e. K is constant. In this case, there exist 3 parameter family of solutions by the Frobenius theorem. Otherwise, assuming $d T \neq 0$ on $T=0$, we consider a submanifold \mathcal{S}^{\prime} of dimension 4 defined by $T=0$.
Differentiating $d K=K_{1} \omega^{1}+K_{2} \omega^{2}$, we see by (2.3) that

$$
\begin{align*}
0 & =d^{2} K \\
& =\left(d K_{1}+K_{2} \omega_{2}^{1}\right) \omega^{1}+\left(d K_{2}-K_{1} \omega_{2}^{1}\right) \omega^{2} . \tag{2.12}
\end{align*}
$$

Thus we put

$$
\begin{align*}
& d K_{1}=-K_{2} \omega_{2}^{1}+K_{11} \omega^{1}+K_{12} \omega^{2} \tag{2.13}\\
& d K_{2}=K_{1} \omega_{2}^{1}+K_{21} \omega^{1}+K_{22} \omega^{2} \tag{2.14}
\end{align*}
$$

By substituting (2.13), (2.14) in (2.12) we have $K_{12}=K_{21}$.
On \mathcal{S}^{\prime}, we have by $(2.11),(2.13)$ and (2.14)

$$
\begin{aligned}
d T & =\xi^{1} d K_{1}+K_{1} d \xi^{1}+\xi^{2} d K_{2}+K_{2} d \xi^{2} \\
& \equiv\left(K_{11} \xi^{1}+K_{12} \xi^{2}-K_{2} \xi_{2}^{1}\right) \omega^{1}+\left(K_{12} \xi^{1}+K_{22} \xi^{2}+K_{1} \xi_{2}^{1}\right) \omega^{2} \quad \bmod \theta
\end{aligned}
$$

We set

$$
\left\{\begin{array}{l}
T_{1}=K_{11} \xi^{1}+K_{12} \xi^{2}-K_{2} \xi_{2}^{1} \tag{2.15}\\
T_{2}=K_{12} \xi^{1}+K_{22} \xi^{2}+K_{1} \xi_{2}^{1}
\end{array}\right.
$$

If $T_{1}, T_{2} \equiv 0$ on $\mathcal{S}^{\prime}, \quad i^{*} \theta^{1}, i^{*} \theta^{3}, i^{*} \theta^{3}$ have rank 2 by Theorem 1.1. Then \mathcal{S}^{\prime} is foliated by two dimensional integral manifolds and therefore there are 2 parameter family of solutions. But this implies that $K_{1}=K_{2}=0$ which is impossible.

Let $A=\left(\begin{array}{ccc}K_{1} & K_{2} & 0 \\ K_{11} & K_{12} & -K_{2} \\ K_{12} & K_{22} & K_{1}\end{array}\right)$.
If $\operatorname{det} A=0, A$ has rank 2 and $\mathcal{S}^{\prime \prime}=\left\{T=T_{1}=T_{2}=0\right\}$ is a 3-dimensional submanifold of \mathcal{S}. If we have $d T_{1}, d T_{2} \equiv 0 \bmod \theta^{1}, \theta^{2}, \theta^{3}$ on $\mathcal{S}^{\prime \prime}$, Theorem 1.1 and the Frobenius theorem imply that $\mathcal{S}^{\prime \prime}$ is foliated by two dimensional integral manifolds and therefore there exists 1 parameter family of solutions. To calculate $d T_{1}, d T_{2}$ we differentiate (2.13). Then we have

$$
\begin{align*}
0 & =d^{2} K_{1} \\
& =\left(d K_{11}+2 K_{12} \omega_{2}^{1}+K_{2} K \omega^{2}\right) \omega^{1}+\left(d K_{12}+K_{22} \omega_{2}^{1}-K_{11} \omega_{2}^{1}\right) \omega^{2} . \tag{2.16}
\end{align*}
$$

Thus we put

$$
\begin{align*}
& d K_{11}=-2 K_{12} \omega_{2}^{1}+K_{111} \omega^{1}+K_{112} \omega^{2} \tag{2.17}\\
& d K_{12}=\left(K_{11}-K_{22}\right) \omega_{2}^{1}+K_{121} \omega^{1}+K_{122} \omega^{2} \tag{2.18}
\end{align*}
$$

By substituting (2.17), (2.18) in (2.16) we have $K_{112}=K_{121}-K_{2} K$.
Differentiating (2.14), we have

$$
\begin{align*}
0 & =d^{2} K_{2} \\
& =\left(d K_{12}+K_{22} \omega_{2}^{1}-K_{11} \omega_{2}^{1}\right) \omega^{1}+\left(d K_{22}-2 K_{12} \omega_{2}^{1}+K_{1} K \omega^{1}\right) \omega^{2} . \tag{2.19}
\end{align*}
$$

By substituting (2.17), (2.18) in (2.19) we have

$$
\left(d K_{22}-2 K_{12} \omega_{2}^{1}+K_{1} K \omega^{1}-K_{122} \omega^{1}\right) \omega^{2}=0
$$

Thus we put

$$
\begin{equation*}
d K_{22}=2 K_{12} \omega_{2}^{1}+\left(K_{122}-K_{1} K\right) \omega^{1}+K_{222} \omega^{2} . \tag{2.20}
\end{equation*}
$$

On $\mathcal{S}^{\prime \prime}$, we have by (2.11), (2.17), (2.18) and (2.20)

$$
\begin{aligned}
d T_{1} \equiv & \left(K_{111} \xi^{1}+\left(K_{121}-K_{2} K\right) \xi^{2}-2 K_{12} \xi_{2}^{1}\right) \omega^{1} \\
& +\left(K_{121} \xi^{1}+K_{122} \xi^{2}+\left(K_{11}-K_{22}\right) \xi_{2}^{1}\right) \omega^{2} \quad \bmod \theta
\end{aligned}
$$

and

$$
\begin{aligned}
d T_{2} \equiv & \left(K_{121} \xi^{1}+K_{122} \xi^{2}+\left(K_{11}-K_{22}\right) \xi_{2}^{1}\right) \omega^{1} \\
& +\left(\left(K_{122}-K_{1} K\right) \xi^{1}+K_{222} \xi^{2}+2 K_{12} \xi_{2}^{1}\right) \omega^{2} \quad \bmod \theta
\end{aligned}
$$

We summarize the discussions of this section in the following
Theorem 2.1 Let M be a Riemannian manifold of dimension 2.
Let $\mathbf{K}=\left(\begin{array}{lll}K_{1} & K_{2} & 0 \\ K_{11} & K_{12} & -K_{2} \\ K_{12} & K_{22} & K_{1} \\ K_{111} & K_{121}-K_{2} K & -2 K_{12} \\ K_{121} & K_{122} & K_{11}-K_{22} \\ K_{122}-K_{1} K & K_{222} & 2 K_{12}\end{array}\right)$.
(i) If \mathbf{K} has rank 0, there exist 3 parameter family of infinitesimal isometries,
(ii) If \mathbf{K} has rank 2 and $\left(K_{1}, K_{2}\right) \neq 0$, there exist 1 parameter family of infinitesimal isometries,
(iii) If \mathbf{K} has rank 3, there exists only trivial infinitesimal isometry.

References

[BBG] E. Berger, R. Bryant and P. Griffiths, The Gauss equations and rigidity of isometric embeddings, Duke Math. J. 50(1983), 803-892.
[Br] R. Bryant, Nine lectures on exterior differential systems, MSRI Lecture Note, 2002.
[BCGGG] R. Bryant, S. S. Chern, R. Gardner, H. Goldschmidt and P. Griffiths, Exterior differential systems, Springer-Verlag, Berlin, 1991.
[Han] C. K. Han, Equivalence problem and complete system of finite order, J. Korean Math. Soc. 37(2000), 225-243.
[Ko] S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, New York, 1972.

